重现 OpenAI o1 的技术路线

重现 OpenAI o1 的技术路线 OpenAI o1发布后,其强大的推理能力远超早期的大语言模型(LLM),达到了媲美博士级专业知识的性能水平。 目前,有两种复现o1的范式: 基于知识蒸馏:这是一种捷径方法,可以提取o1的数据并微调LLM(如Llama 3.2、Qwen2等)以模仿o1的推理风格

典型的RAG流程、每个模块的最佳实践和综合评估

典型的RAG流程、每个模块的最佳实践和综合评估 近日热文:全网最全的神经网络数学原理(代码和公式)直观解释 欢迎关注知乎和公众号的专栏内容 LLM架构专栏 知乎LLM专栏

RAG 

加速大模型推理:深入探究MQA、GQA、MLA(DeepSeek)、KV缓存技术

加速大模型推理:深入探究MQA、GQA、MLA(DeepSeek)、KV缓存技术 回顾:多头注意力机制 为什么LLM推理是串行的 KV缓存的挑战 2019年——多查询注意力机制(Multi Query Attention) 2023年5月——分组查询注意力机制(Grouped Query Atten

强化自训练(ReST):让大语言模型更懂你的“心”

强化自训练(ReST):让大语言模型更懂你的“心” 强化自我训练(Reinforced Self-Training,ReST)是一种简单的算法,它能让大语言模型(LLM)的输出更符合人类的偏好。这种算法的灵感来源于不断发展的批量强化学习(RL)。简单来说,先给大语言模型设定一个初始策略,ReST就可

Qwen2.5-Max:对标DeepSeek V3

Qwen2.5-Max:对标DeepSeek V3 Qwen2.5-Max:阿里巴巴挑战DeepSeek V3的新AI巨头 大语言模型(LLMs)彻底改变了AI领域,实现了从聊天机器人到复杂推理系统等众多应用。这些模型依赖大量数据和计算能力,随着规模的扩大,它们的能力也在不断提升。这一进步背后的关键

开源 

DeepSeek-R1的顿悟时刻是如何出现的? 背后的数学原理:强化学习如何教大型语言模型进行推理

DeepSeek-R1的顿悟时刻是如何出现的? 背后的数学原理:强化学习如何教大型语言模型进行推理 DeepSeek-R1的卓越表现 DeepSeek-R1的开创性论文《DeepSeek-R1:通过强化学习激励大语言模型(LLMs)的推理能力》,对其性能进行了全面分析,结果令人惊叹。在标准语言模型基

强化学习中的关键模型与算法:从Actor-Critic到GRPO


强化学习中的关键模型与算法:从Actor-Critic到GRPO 强化学习中的Actor-Critic模型是什么? 这与生成对抗网络(GANs)十分相似。在生成对抗网络中,生成器和判别器模型在整个训练过程中相互对抗。在强化学习的Actor-Critic模型中,也存在类似的概念: Actor-Crit

DeepSeek-R1:通过强化学习激励大语言模型的推理能力

DeepSeek-R1:通过强化学习激励大语言模型的推理能力 在开始之前,需要了解以下术语。 什么是强化学习? 强化学习(RL)是一种机器学习方式,人工智能通过采取行动,并根据这些行动获得奖励或惩罚来进行学习,其目标是在一段时间内最大化奖励。 举个例子:想象教一个机器人玩游戏,机器人尝试不同的动作,

OpenAI o3-mini 与 DeepSeek-R1 在各类基准测试中的大比拼

OpenAI o3-mini与DeepSeek-R1在各类基准测试中的大比拼 OpenAI终于发布了o3-mini,还为ChatGPT的所有用户免费提供了一些使用额度。但大家心里始终有个大大的疑问:OpenAI的o3-mini会比DeepSeek-R1更胜一筹吗? 虽说OpenAI官方团队并没有发布

用DeepSeek R1和Ollama构建本地RAG系统,向PDF提问不再是梦!

用DeepSeek R1和Ollama构建本地RAG系统,向PDF提问不再是梦! 有没有想过能直接向PDF文件或者技术手册提问?如何利用开源推理工具DeepSeek R1和运行本地AI模型的轻量级框架Ollama,搭建一个检索增强生成(RAG)系统。 为什么选DeepSeek R1? DeepSee

RAG