置顶

2W8000字读懂GPT全家桶:从GPT-1到O1的技术演进与突破

2025-03-25

掌握Torchtune:高效微调、评估和部署大型语言模型的实用指南


掌握Torchtune:高效微调、评估和部署大型语言模型的实用指南 近日热文:全网最全的神经网络数学原理(代码和公式)直观解释 欢迎关注知乎和公众号的专栏内容 LLM架构专栏 知乎LLM专栏

LLM架构系列 ---探索文本嵌入模型:从基础到BERT与SBERT实战

本文1W字,探讨了各种用于生成文本向量表示的嵌入模型,包括词袋模型(BoW)、TF-IDF、Word2Vec、GloVe、FastText、ELMO、BERT等等。深入研究了BERT的架构和预训练,介绍了用于高效生成句子嵌入的句子BERT(SBERT),并提供了一个使用sentence-transf

2W6000字 大模型核心技术综述:微调、推理与优化指南

本文2W6000字,10篇参考文献,内容涵盖了语言建模、预训练面临的挑战、量化技术、分布式训练方法,以及大语言模型的微调。此外,还讨论了参数高效微调(PEFT)技术,包括适配器、LoRA和QLoRA;介绍了提示策略、模型压缩方法(如剪枝和量化),以及各种量化技术(GPTQ、NF4、GGML)。最后,

一文读懂大语言模型评估:方法、指标与框架全解析

大模型评估全解析:方法、指标与框架 🕙发布时间:2025-02-24 本文3W4000字,分了8个小节介绍大模型评估方法,后续会把最新的方法更新进来~,有些内容是翻译自HuggingFace和一些论文,更多LLM架构文章:

3W6000字了解大模型LLM:部署、优化与框架

3W6000字了解大模型LLM:部署、优化与框架 🕙发布时间:2025-02-20 本文3W6000字,分了11个小结介绍各种框架和方法,后续会把最新的方法更新进来~,有些内容是翻译自HuggingFace和一些论文 近日热文: 1. 全网最全的神经网络数学原理(代码和公式)直观解释 2. 大模型

VLLM 与 Ollama:如何选择合适的轻量级 LLM 框架?

VLLM 与 Ollama:如何选择合适的轻量级 LLM 框架? VLLM是一款经过优化的推理引擎,在令牌生成速度和内存管理效率上表现出色,是大规模AI应用的理想之选。Ollama则是一个轻量级、易上手的框架,让在本地电脑上运行开源大语言模型变得更加简单。 那么,这两个框架该选哪一个呢?接下来,我们

重现 OpenAI o1 的技术路线

重现 OpenAI o1 的技术路线 OpenAI o1发布后,其强大的推理能力远超早期的大语言模型(LLM),达到了媲美博士级专业知识的性能水平。 目前,有两种复现o1的范式: 基于知识蒸馏:这是一种捷径方法,可以提取o1的数据并微调LLM(如Llama 3.2、Qwen2等)以模仿o1的推理风格

加速大模型推理:深入探究MQA、GQA、MLA(DeepSeek)、KV缓存技术

加速大模型推理:深入探究MQA、GQA、MLA(DeepSeek)、KV缓存技术 回顾:多头注意力机制 为什么LLM推理是串行的 KV缓存的挑战 2019年——多查询注意力机制(Multi Query Attention) 2023年5月——分组查询注意力机制(Grouped Query Atten

OpenAI o3-mini 与 DeepSeek-R1 在各类基准测试中的大比拼

OpenAI o3-mini与DeepSeek-R1在各类基准测试中的大比拼 OpenAI终于发布了o3-mini,还为ChatGPT的所有用户免费提供了一些使用额度。但大家心里始终有个大大的疑问:OpenAI的o3-mini会比DeepSeek-R1更胜一筹吗? 虽说OpenAI官方团队并没有发布